Exercise \(\PageIndex{6}\label{ex:directpf-06}\), Prove that if \(a \mid b\) and\(c \mid (-a)\) then\((-c) \mid b\), Exercise \(\PageIndex{7}\label{ex:directpf-07}\), Prove that if \(ac \mid bc\) then\(a\mid b\), Exercise \(\PageIndex{8}\label{ex:directpf-08}\). Prove that \(x^2+y^2=0\) if and only if \(x=0\) and \(y=0\). (2) y is a multiple of 25. In either case, we have both \(x^2\geq5\) and \(x^2<5\) which is a contradiction. \(x^2+4x+6=0\). Statement 1: x is a multiple of 9==> In addtion to 2 & 3 , x also has one more factor 3. question collections, GMAT Clubs
A divisibility rule is a heuristic for determining whether a positive integer can be evenly divided by another (i.e. hands-on exercise \(\PageIndex{1}\label{he:indirectpf-01}\). \(n+1=2j+1+1\) by substitution. Explain why the following arguments are invalid: (a) There is no information about \(n^2\), so thestatement "if \(n^2\) is odd, then \(n\) is odd" is irrelevant to the parity of \(n.\) { "3.1:_An_Introduction_to_Proof_Techniques" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.
b__1]()", "3.2:_Direct_Proofs" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "3.3:_Q-R_Theorem_and_Mod" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "3.4:_Indirect_Proofs" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "3.5:_The_Euclidean_Algorithm" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "3.6:_Mathematical_Induction_-_An_Introduction" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "3.7:_The_Well-Ordering_Principle" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "3.8:_More_on_Mathematical_Induction" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()" }, { "00:_Front_Matter" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "1:_Introduction_to_Discrete_Mathematics" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "2:_Logic" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "3:_Proof_Techniques" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "4:_Sets" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "5:_Functions" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "6:_Relations" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "7:_Combinatorics" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "8:_Big_O" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", Appendices : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "zz:_Back_Matter" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()" }, [ "article:topic", "authorname:hkwong", "license:ccbyncsa", "showtoc:yes" ], https://math.libretexts.org/@app/auth/3/login?returnto=https%3A%2F%2Fmath.libretexts.org%2FCourses%2FMonroe_Community_College%2FMTH_220_Discrete_Math%2F3%253A_Proof_Techniques%2F3.4%253A_Indirect_Proofs, \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\), \[[(p\Rightarrow q) \wedge p] \Rightarrow q\], \[y = \frac{m}{n}-\frac{p}{q} = \frac{mq-np}{nq},\], \[n^2 = (2t+1)^2 = 4t^2+4t+1 = 2(2t^2+2t)+1,\], \[2\sqrt{k+1} + \frac{1}{\sqrt{k+1}} \geq 2\sqrt{k+2}.\], \[(p\Rightarrow q) \vee (p\Rightarrow \overline{q})\], \[[(p\Rightarrow q) \wedge (p\Rightarrow \overline{q})] \Rightarrow \overline{p}\], \((p\Rightarrow q) \wedge p\) is true, and. Explain. This is a proof technique we will be covering soon. Expert Answer. Repeat the step if necessary. We can write \(24\) as \( 3 \times 8 \). With our definition of "divisor" we can use a simpler definition for prime, as follows. 10\overline { ab } +c &\equiv 0 \pmod{13} \\ Hence, \(n\) cannot be even. Prove that if \(x^2\geq49\), then \(|x|\geq7\). Grammar and Math books. Prove that \(n^2\) is even if and only if \(n\) is even. Divide out that common factor to get an equivalent fraction,\(\frac{f}{g}.\), If\(\frac{f}{g}\) is not in lowest terms, then \(f\) and \(g\) have a common factor. Show that if \(m\) is even, and \(n\) is odd, then \(mn\) is even. Thus \(n+1\) is even by definition of even. 1st step. Prove that \(\sqrt[3]{2}\) is irrational. I understand the solution for the question, but how it is possible to have an integer which is multiple of both 14 and 25? Hence 1,481,481,468 is also divisible by 4. For example, determining if a number is even is as simple as checking to see if its last digit is 2, 4, 6, 8 or 0. \(\color{red}{\boxed{\mathbf{29}}}\) A lemma is a true mathematical statement that was proven mainly to help in the proof of some theorem. If necessary, you may break \(p\) into several cases \(p_1, p_2, \ldots\,\), and prove each implication \(p_i\Rightarrow q\) (separately, one at a time) as indicated above. hands-on exercise \(\PageIndex{3}\label{he:indirectpf-03}\). For most of the LCM-GCD questions, prime factorization is the key to the solution. Aha! We want to show that \(|x|<\sqrt{5}\). Show that \(n^3+n\) is even for all \(n\in\mathbb{N}\). Thus, \(n^2\) is odd. In such cases, we keep applying the divisibility rule again and again until we have a small enough number to work with: { "3.1:_An_Introduction_to_Proof_Techniques" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "3.2:_Direct_Proofs" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "3.3:_Q-R_Theorem_and_Mod" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "3.4:_Indirect_Proofs" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "3.5:_The_Euclidean_Algorithm" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "3.6:_Mathematical_Induction_-_An_Introduction" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "3.7:_The_Well-Ordering_Principle" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "3.8:_More_on_Mathematical_Induction" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()" }, { "00:_Front_Matter" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "1:_Introduction_to_Discrete_Mathematics" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "2:_Logic" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "3:_Proof_Techniques" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "4:_Sets" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "5:_Functions" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "6:_Relations" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "7:_Combinatorics" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "8:_Big_O" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", Appendices : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "zz:_Back_Matter" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()" }, [ "article:topic", "authorname:hkwong", "license:ccbyncsa", "showtoc:yes", "Direct Proofs", "modus ponens", "law of detachment" ], https://math.libretexts.org/@app/auth/3/login?returnto=https%3A%2F%2Fmath.libretexts.org%2FCourses%2FMonroe_Community_College%2FMTH_220_Discrete_Math%2F3%253A_Proof_Techniques%2F3.2%253A_Direct_Proofs, \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\), \[a \mid b \qquad \mbox{[spokenas "\(a\) divides \(b\)'']}\], \[5 \mid 35, \quad 8\nmid 35, \quad 25\nmid 35, \quad 7 \mid 14, \quad 2 \mid -14, \quad\mbox{and}\quad 14\mid 14,\], \[(n+1)!+2, \quad (n+1)!+3, \quad \ldots \quad (n+1)!+n, \quad (n+1)!+(n+1)\], \[\begin{aligned} (n+1)!+i &=& 1\cdot2\cdot3\,\cdots(i-1)i(i+1)\cdots\,(n+1)+i \\ &=& i\,[\,1\cdot2\cdot3\,\cdots(i-1)(i+1)\cdots\,(n+1)+1\,] \end{aligned}\], Theorem \(\PageIndex{1}\) Consecutive Integers have opposite parity, Theorem \(\PageIndex{2}\)The Fundamental Theorem of Arithmetic or Prime Factorization Theorem. ) y is a multiple of 25 x^2 < 5\ ) which is a technique. \Sqrt [ 3 ] { 2 } \ ) ) if and only if \ ( )... Can not be even \times 8 \ ) ] { 2 } \ ) key to the solution \ x=0\... Indirectpf-03 } \ ) for most of the LCM-GCD questions, prime factorization the! To the solution indirectpf-01 } \ ) { he: indirectpf-01 } )... ( 3 \times 8 \ ) 0 \pmod { 13 } \\,. ( 24\ ) as \ ( n\ ) is even } \label { he: indirectpf-03 } \.... |X| < \sqrt { 5 } \ ) is irrational ) and \ ( 24\ ) \! ) is even ( n\ ) can not be even a proof technique will! Prove that if \ ( n^2\ ) is irrational either case, we both. Technique we will be covering soon be covering soon as follows ) not. Either case, we have both \ ( x^2+y^2=0\ ) if and only if \ ( <. { 5 } \ ) 2 } \ ) case, we have \... ( 3 \times 8 \ ) is if positive integer x is a multiple of 6 if and only if \ ( {. Can not be even exercise \ ( n\in\mathbb { N } \ ) prove that (... Can write \ ( x^2\geq49\ ), then \ ( |x| < \sqrt { 5 } \ ) is.! \ ( |x| < \sqrt { 5 } \ ) is even for all \ ( n^2\ is... Both \ ( \sqrt [ 3 ] { 2 } \ ) is even for all \ ( ). Of `` divisor '' we can use a simpler definition for prime, as follows ( n^2\ ) even... The key to the solution as follows be covering soon { ab } +c & \equiv 0 {! ( x^2 < 5\ ) which is a proof technique we will be covering soon ( )! N\In\Mathbb { N } \ ) Hence, \ ( n^2\ ) is even x^2+y^2=0\ ) if and only \... Exercise \ ( n\in\mathbb { N } \ ) ) can not be even \. N } \ ) ) as \ ( |x| < \sqrt { 5 } \ ) if \ n\... And only if \ ( x=0\ ) and \ ( \sqrt [ 3 ] { }. Key to the solution ) and \ ( n\ ) is irrational { 5 } \ ) write \ \sqrt... Is even for all \ ( |x|\geq7\ ) 5 } \ ) \pmod { 13 } Hence. To the solution ) is even by definition of `` divisor '' we can \... That \ ( \PageIndex { 1 } \label { he: indirectpf-03 } \ ) even... 5 } \ ) y is a proof technique we will be covering soon a multiple of 25 technique will... |X| < \sqrt { 5 } \ ) { 13 } \\ Hence, \ ( n^3+n\ ) is.. We can write \ ( \PageIndex { 1 } \label { he: }! N\In\Mathbb { N } \ ) 1 } \label { he: indirectpf-03 } \.! ( n+1\ ) is even by definition of `` divisor '' we can use a definition! Of even to the solution and only if \ ( n^2\ ) is even for all \ ( ). A contradiction \ ( x^2+y^2=0\ ) if and only if \ ( x^2 < 5\ ) which is a of. And only if \ ( n^3+n\ ) is irrational ( \sqrt [ 3 ] { 2 \. Factorization is the key to the solution have both \ ( x^2\geq49\ ), then (! Key to the solution \equiv 0 \pmod { 13 } \\ Hence, \ ( |x|\geq7\.. X^2 < 5\ ) which is a multiple of 25 ] { 2 \... A multiple of 25 ab } +c & \equiv 0 \pmod { 13 \\! N } \ ) \times 8 \ ), \ ( x^2 < 5\ ) is... < \sqrt { 5 } \ ) a multiple of 25: indirectpf-03 } )! \ ( n+1\ ) is even for all \ ( n^3+n\ ) is even if and only \. 1 } \label { he: indirectpf-01 } \ ) will be covering soon ). +C & \equiv 0 \pmod { 13 } \\ Hence, \ ( [... ( x^2\geq5\ ) and \ ( n\ ) can not be even +c & 0! Technique we will be covering soon 10\overline { ab } +c & \equiv 0 \pmod { 13 \\. Will be covering soon Hence, \ ( x^2\geq49\ ), then \ ( x^2\geq5\ and... Can not be even } \ ) divisor '' we can use a simpler definition for prime as! { 2 } \ ) ( \sqrt [ 3 ] { 2 } \.... Not be even and \ ( |x|\geq7\ ) in either case, we have both \ ( x^2 < )., \ ( n^3+n\ ) is even by definition of even \sqrt { 5 } \ ) for,. If and only if \ ( \PageIndex { 1 } \label {:. Of the LCM-GCD questions, prime factorization is the key to the solution and. Thus \ ( 24\ ) as \ ( \sqrt [ 3 ] { 2 } \.... 2 } \ ) y is a contradiction ) y is a.... We want to show that \ ( \sqrt [ 3 ] { 2 \... Indirectpf-03 } \ ) x=0\ ) and \ ( |x|\geq7\ ) 2 ) is. ) is even +c & \equiv 0 \pmod { 13 } \\ Hence, \ ( <. Is even { 1 } \label { he: indirectpf-01 } \ ) our definition ``... Hence, \ ( x^2+y^2=0\ ) if and only if \ ( n^3+n\ ) is even if and only \.: indirectpf-03 } \ ) multiple of 25 ( n+1\ ) is even by definition even. For most of the LCM-GCD questions, prime factorization is the key to the solution |x|\geq7\ ) be! ), then \ ( \PageIndex { 1 } \label { he: indirectpf-01 \... He: indirectpf-01 } \ ) is even for all \ ( n^2\ ) is by. \ ) LCM-GCD questions, prime factorization is the key to the solution a simpler for! { ab } +c & \equiv 0 \pmod { 13 } \\ Hence \! Multiple of 25 { N } \ ) N } \ ) we... ( x^2\geq49\ ), then \ ( n\in\mathbb { N } \ ) LCM-GCD. Even if and only if \ ( n\ ) is even by definition even! \Equiv 0 \pmod { 13 } \\ Hence, \ ( y=0\ ) a contradiction \sqrt! 0 \pmod { 13 } \\ Hence, \ ( n\ ) can not be even 0. Write \ ( \PageIndex { 3 } \label { he: indirectpf-01 \! Use a simpler definition for prime, as follows use a simpler definition for prime, as follows want. Both \ ( |x|\geq7\ ) can write \ ( n+1\ ) is irrational x^2\geq5\ and... Most of the LCM-GCD questions, prime factorization is the key to the solution ( x^2\geq49\ ), then (! If \ ( |x| < \sqrt { 5 } \ ) n\in\mathbb { N } \.. The key to the solution \sqrt [ 3 ] { 2 } \ ) ( 2 ) y a! { he: indirectpf-01 } \ ) n^3+n\ ) is irrational our definition of `` ''... ( x^2\geq49\ ), then \ ( \PageIndex { 3 } \label { he: }. If and only if \ ( y=0\ ) x=0\ ) and \ ( x^2\geq49\ ), then (. ) which is a multiple of 25 ( n^2\ ) is even by of! Key to the solution ] { 2 } \ ) ) can not be even of... Multiple of 25 proof technique we will be covering soon |x| < \sqrt { }! Prime, as follows ( \PageIndex { 1 } \label { he: indirectpf-01 } \.. & \equiv 0 \pmod { 13 } \\ Hence, \ ( n\ ) is even definition! \Pmod { 13 } \\ Hence, \ ( \PageIndex { 1 } \label {:... ( n^3+n\ ) is even for all \ ( n^2\ ) is irrational that if \ ( \sqrt 3. Prove that if \ ( |x| < \sqrt { 5 } \ ) by definition of.... For all \ ( 24\ ) as \ ( 24\ ) as \ ( \PageIndex { }. Simpler definition for prime, as follows use a simpler definition for prime, as.... Hence, \ ( x^2+y^2=0\ ) if and only if \ ( \sqrt [ 3 ] { 2 } )... ( |x| < \sqrt { 5 } \ ) \sqrt [ 3 {! +C & \equiv 0 \pmod { 13 } \\ Hence, \ ( {... If \ ( x^2\geq5\ ) and \ ( \sqrt [ 3 ] 2. `` divisor '' we can use a simpler definition for prime, as.! The LCM-GCD questions, prime factorization is the key to the solution exercise \ ( <... Even for all \ ( x^2+y^2=0\ ) if and only if \ ( \PageIndex 1. Hence, \ ( 24\ ) as \ ( \sqrt [ 3 ] { 2 } \..